Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37962958

ABSTRACT

Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.


Subject(s)
Neurodevelopmental Disorders , Spliceosomes , Humans , Spliceosomes/genetics , Gene Regulatory Networks , Neurodevelopmental Disorders/genetics , Mutation, Missense , RNA Splicing , RNA Splicing Factors/genetics , Nuclear Proteins/genetics , DNA Repair Enzymes/genetics
2.
Am J Med Genet A ; 194(1): 64-69, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37705207

ABSTRACT

Turner syndrome (45,X) is caused by a complete or partial absence of a single X chromosome. Vascular malformations occur due to abnormal development of blood and/or lymphatic vessels. They arise from either somatic or germline pathogenic variants in the genes regulating growth and apoptosis of vascular channels. Aortic abnormalities are a common, known vascular anomaly of Turner syndrome. However, previous studies have described other vascular malformations as a rare feature of Turner syndrome and suggested that vascular abnormalities in individuals with Turner syndrome may be more generalized. In this study, we describe two individuals with co-occurrence of Turner syndrome and vascular malformations with a lymphatic component. In these individuals, genetic testing of the lesional tissue revealed a somatic pathogenic variant in PIK3CA-a known and common cause of lymphatic malformations. Based on this finding, we conclude that the vascular malformations presented here and likely those previously in the literature are not a rare part of the clinical spectrum of Turner syndrome, but rather a separate clinical entity that may or may not co-occur in individuals with Turner syndrome.


Subject(s)
Cardiovascular Abnormalities , Lymphatic Abnormalities , Turner Syndrome , Vascular Malformations , Humans , Turner Syndrome/complications , Turner Syndrome/genetics , Mosaicism , Lymphatic Abnormalities/genetics , Vascular Malformations/complications , Vascular Malformations/genetics , Class I Phosphatidylinositol 3-Kinases/genetics
3.
Nat Med ; 29(6): 1530-1539, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37264205

ABSTRACT

Vascular anomalies are malformations or tumors of the blood or lymphatic vasculature and can be life-threatening. Although molecularly targeted therapies can be life-saving, identification of the molecular etiology is often impeded by lack of accessibility to affected tissue samples, mosaicism or insufficient sequencing depth. In a cohort of 356 participants with vascular anomalies, including 104 with primary complex lymphatic anomalies (pCLAs), DNA from CD31+ cells isolated from lymphatic fluid or cell-free DNA from lymphatic fluid or plasma underwent ultra-deep sequencing thereby uncovering pathogenic somatic variants down to a variant allele fraction of 0.15%. A molecular diagnosis, including previously undescribed genetic causes, was obtained in 41% of participants with pCLAs and 72% of participants with other vascular malformations, leading to a new medical therapy for 63% (43/69) of participants and resulting in improvement in 63% (35/55) of participants on therapy. Taken together, these data support the development of liquid biopsy-based diagnostic techniques to identify previously undescribed genotype-phenotype associations and guide medical therapy in individuals with vascular anomalies.


Subject(s)
Lymphatic Abnormalities , Vascular Malformations , Humans , Mutation , Genetic Testing/methods , Vascular Malformations/diagnosis , Vascular Malformations/genetics , Vascular Malformations/therapy , Alleles , Lymphatic Abnormalities/genetics , Genomics
4.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-37154160

ABSTRACT

Central conducting lymphatic anomaly (CCLA) due to congenital maldevelopment of the lymphatics can result in debilitating and life-threatening disease with limited treatment options. We identified 4 individuals with CCLA, lymphedema, and microcystic lymphatic malformation due to pathogenic, mosaic variants in KRAS. To determine the functional impact of these variants and identify a targeted therapy for these individuals, we used primary human dermal lymphatic endothelial cells (HDLECs) and zebrafish larvae to model the lymphatic dysplasia. Expression of the p.Gly12Asp and p.Gly13Asp variants in HDLECs in a 2­dimensional (2D) model and 3D organoid model led to increased ERK phosphorylation, demonstrating these variants activate the RAS/MAPK pathway. Expression of activating KRAS variants in the venous and lymphatic endothelium in zebrafish resulted in lymphatic dysplasia and edema similar to the individuals in the study. Treatment with MEK inhibition significantly reduced the phenotypes in both the organoid and the zebrafish model systems. In conclusion, we present the molecular characterization of the observed lymphatic anomalies due to pathogenic, somatic, activating KRAS variants in humans. Our preclinical studies suggest that MEK inhibition should be studied in future clinical trials for CCLA due to activating KRAS pathogenic variants.


Subject(s)
Proto-Oncogene Proteins p21(ras) , Zebrafish , Animals , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Endothelial Cells/metabolism , Phosphorylation , Mitogen-Activated Protein Kinase Kinases/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
6.
Eur J Hum Genet ; 30(9): 1022-1028, 2022 09.
Article in English | MEDLINE | ID: mdl-35606495

ABSTRACT

Central conducting lymphatic anomaly (CCLA) is a heterogenous disorder caused by disruption of central lymphatic flow that may result in dilation or leakage of central lymphatic channels. There is also a paucity of known genetic diagnoses associated with CCLA. We hypothesized that specific genetic syndromes would have distinct lymphatic patterns and this would allow us to more precisely define CCLA. As a first step toward "precision lymphology", we defined the genetic conditions associated with CCLA by performing a retrospective cohort study. Individuals receiving care through the Jill and Mark Fishman Center for Lymphatic Disorders at the Children's Hospital of Philadelphia between 2016 and 2019 were included if they had a lymphangiogram and clinical genetic testing performed and consented to a clinical registry. In our cohort of 115 participants, 26% received a molecular diagnosis from standard genetic evaluation. The most common genetic etiologies were germline and mosaic RASopathies, chromosomal abnormalities including Trisomy 21 and 22q11.2 deletion syndrome, and PIEZO1-related lymphatic dysplasia. Next, we analyzed the dynamic contrast magnetic resonance lymphangiograms and found that individuals with germline and mosaic RASopathies, mosaic KRASopathies, PIEZO1-related lymphatic dysplasia, and Trisomy 21 had distinct central lymphatic flow phenotypes. Our research expands the genetic conditions associated with CCLA and genotype-lymphatic phenotype correlations. Future descriptions of CCLA should include both genotype (if known) and phenotype to provide more information about disease (gene-CCLA). This should be considered for updated classifications of CCLA by the International Society of Vascular Anomalies.


Subject(s)
Down Syndrome , Lymphatic Abnormalities , Cohort Studies , Genetic Association Studies , Humans , Ion Channels/genetics , Lymphatic Abnormalities/genetics , Phenotype , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...